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Imagine this Situation…
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Hm… What 
do I think 
about this 
candidate?

2.7!



Interpersonal Communication in Selection

• We constantly explain ourselves (Bolander & Sandberg, 2013)
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We call this holistic decision making (Meehl, 1954)



Mechanical Decision Making

• Use an algorithm or rule to combine information (Meehl, 1954) 

• Fit rating = GMA*1 + Conscientiousness*1 + Interview rating*1

• Fit rating = GMA*0.7 + Conscientiousness*0.2 + Interview rating*0.1

• Hire if GMA >= 100 and Interview rating everything else than the worst
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(Simple) Algorithms Beat Expert Judgment
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Algorithms as Advisors

• When algorithms are used at all, predictions serve as mere advice

• Considering algorithmic advice…

1. Increases validity compared to pure holistic prediction (Dietvorst et 

al., 2018; Neumann et al., 2022; 2023)

2. Decreases validity compared to strict algorithm use
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Algorithms as Advisors

• RQ: How can we increase the consistent use of algorithmic advice?

• Have an algorithm “explain itself” –> tell (data-based) stories

• Stimulate decision-makers’ sense making of algorithmic predictions
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Participants and Prediction Task

• N = 1200 (54% male, Mage= 40, 86% white, 93% US/UK citizen)

• Predict job performance of 40 random applicants based on:
• Cognitive ability test score

• Conscientiousness questionnaire score

• Unstructured interview rating

• Algorithmic prediction
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Design

• 2 x 2 x 2 between-subjects design

• Narrative algorithm fit rating (no/yes)
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Algorithm’s Explanation

1. Set approximately equal score bands on predictor scores

2. Translate scores into words (interview = 2 -> “bad”)

3. Randomly vary the intro, verb, and end of a sentence
• Intro = “In this case,”, “Given these results,”, “Looking at these numbers,”, “Based on this 

profile,”

• Verb = “think”, “would say”, “believe”

• End = “my rating for this applicant would be a”, “I would give this applicant a rating of”, 

“my rating in this case would be a”, “I think a good rating is a”

4. Knit everything together
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Design

• 2 x 2 x 2 between-subjects design

• Narrative algorithm fit rating (no/yes)

• Narrative predictor information (no/yes)
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Design

• 2 x 2 x 2 between-subjects design

• Narrative algorithm fit rating (no/yes)

• Narrative predictor information (no/yes)

• Algorithm’s rating as default (no/yes)
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Measures

• Algorithm use:

• Judgment consistency: Fit rating ~ the three predictors

• Validity: r between the 40 fit ratings and performance ratings

• Attitudinal measures
• Trust (”I have trust in the algorithm’s fit ratings”)

• Anthropomorphism (”I felt like I was interacting with a human when making fit ratings”)

• Use intentions (”I would choose to use the algorithm to make future hiring decisions”)
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Results

• Participants’ validity was slightly lower than algorithm’s validity
• This left little room for our interventions to improve participants’ validity
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Mean optimal 
model validity

Mean algorithm 
validity

Mean participant 
validity

.42 .34 .32



Mean Absolute Deviation
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Judgment Consistency
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Predictive Validity
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Anthropomorphism
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Trust
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Use Intentions
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Discussion

• We used a low-key explanation: Short, descriptive, text, no avatar

• Our algorithm did not think nor type (think of ChatGPT)

• No interaction/two-way communication -> less sense making?

• No qualitative predictor information

• More reason to deviate

• Richer stories

• How can decision makers make sense of algorithmic predictions?
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